Finding the Midpoint and Length of a Line Segment

In coordinate geometry, it is important to be able to find the midpoints and the lengths of segments.

EXAMPLE A

a. Find the coordinates of the midpoints of TP and AR.

b. Compare the length of MN with the sum of the lengths of TR and PA.

Solution:

a. For the segment whose endpoints are (x_1, y_1) and (x_2, y_2), the coordinates of the midpoint are $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$.

$M: \left(\frac{-6 + (-6)}{2}, \frac{9 + 1}{2}\right) = \left(\frac{-12}{2}, \frac{10}{2}\right) = (-6, 5)$

$N: \left(\frac{0 + 12}{2}, \frac{-2 + 0}{2}\right) = \left(\frac{12}{2}, \frac{-2}{2}\right) = (6, -1)$

b. Use the Distance Formula $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ to find the distance between (x_1, y_1) and (x_2, y_2).

$MN = \sqrt{(-6 - 6)^2 + (5 - 1)^2} = \sqrt{(-12)^2 + 6^2} = \sqrt{144 + 36} = \sqrt{180} = \sqrt{36 \cdot 5} = 6\sqrt{5}$ units

$TR = \sqrt{(-6 - 12)^2 + (9 - 0)^2} = \sqrt{324 + 81} = \sqrt{405} = \sqrt{81 \cdot 5} = 9\sqrt{5}$ units

$PA = \sqrt{(-6 - 0)^2 + (1 - (-2))^2} = \sqrt{36 + 9} = \sqrt{45} = 3\sqrt{5}$ units

Notice that the average of $9\sqrt{5}$ and $3\sqrt{5}$ is $\frac{9\sqrt{5} + 3\sqrt{5}}{2} = \frac{12\sqrt{5}}{2} = 6\sqrt{5}$. In other words, the length of MN, which is $6\sqrt{5}$ units, is the average of the lengths of TR and PA; or the length of TR and PA together, is twice the length of MN.
In $\triangle RST$, points V and W are the midpoints of RT and ST. Compare the lengths of RS and VW.

Step 1: Use $R(1, 7)$ and $S(5, 1)$ to find the length of RS.

$$RS = \sqrt{(1 - 5)^2 + (7 - 1)^2} = \sqrt{16 + 36} = \sqrt{52} = 2\sqrt{13}$$

Step 2: Use the Midpoint Formula to find coordinates of points V and W.

$V: \left(\frac{-3 + 1}{2}, \frac{-3 + 7}{2}\right) = (\frac{-2}{2}, \frac{4}{2}) = (-1, 2)$

$W: \left(\frac{-3 + 5}{2}, \frac{-3 + 1}{2}\right) = (\frac{2}{2}, \frac{-2}{2}) = (1, -1)$

Step 3: Use $V(-1, 2)$ and $W(1, -1)$ to find the length of VW.

$$VW = \sqrt{(-1 - 1)^2 + (2 - (-1))^2} = \sqrt{4 + 9} = \sqrt{13}$$

Solution: The length of VW is half the length of RS. This actually illustrates the Triangle Midsegment Theorem, which states that the segment joining the midpoints of two sides of a triangle is parallel to the other side of the triangle and is half the length of that side.
Finding the Midpoint and Length of a Line Segment (continued)

PRACTICE

Use the diagram shown for Items 1–2.

1. Find the midpoints of MT and AH.
2. Find the lengths of MT and AH.

Use the diagram shown for Items 3–7.

3. Find the coordinates of the midpoint of AC. Do the coordinates satisfy $y = -x + 8$? Is the midpoint of AC on the line $y = -x + 8$?
4. Find the coordinates of the midpoint of BC.
5. Find the coordinates of the midpoint of AB.

6. What is the length of the segment from the midpoint of AB to vertex C?

7. Find the distance between points C and R. How does that distance compare to the length of the segment from the midpoint of AB to vertex C?